

Welcome to DeriveAlive’s documentation!

	Introduction

	How to Use DeriveAlive

	Background

	Software Organization

	Implementation

	Additional Features

	Future

	References

Introduction

Differentiation, i.e. finding derivatives, has long been one of the key
operations in computation related to modern science and engineering. In
optimization and numerical differential equations, finding the extrema
will require differentiation. There are many important applications of
automatic differentiation in optimization, machine learning, and
numerical methods (e.g., time integration, root-finding).

This documentation introduces DeriveAlive, a software
library that uses the concept of automatic differentiation to solve
differentiation problems in scientific computing. Additional features
of a root finding suite, an optimization suite and a quadratic spline
suite are also listed in this documentation.

How to Use DeriveAlive

How to install

The url to the project is https://pypi.org/project/DeriveAlive/.

	Create a virtual environment and activate it

If you don't have virtualenv, install it
sudo easy_install virtualenv
Create virtual environment
virtualenv env
Activate your virtual environment
source env/bin/activate

	Install DeriveAlive using pip. In the terminal, type:

pip install DeriveAlive

	Run module tests before beginning.

Navigate to https://pypi.org/project/DeriveAlive/#files
Download tar.gz folder, unzip, and enter the folder
pytest tests

Basic demo

python
>>> from DeriveAlive import DeriveAlive as da
>>> from DeriveAlive import rootfinding as rf
>>> from DeriveAlive import optimize as opt
>>> from DeriveAlive import spline as sp
>>> import numpy as np
>>> import matplotlib.pyplot as plt

Declare Variables

	Denote constants

None has to be typed, otherwise will be denoted as an R^1 variable
>>> a = da.Var([1], None)
>>> a
Var([1], None)

Note

Constant (scalar or vector): User must initialize derivative to ‘None’. Otherwise, the variable will be denoted as an \(\mathbb{R}^1\) variable with derivative [1].

	Denote scalar variables and functions

The first way to denote a scalar varibale
>>> x = da.Var([1])
>>> x
Var([1], [1])

The second way to denote a scalar variable
>>> x = da.Var([1], [1])
>>> x
Var([1], [1])

Denote a scalar function
>>> f = 2 * x + np.sin(x)
>>> f
Var([2.84147098], [2.54030231])

Define a callable scalar function:
>>> def f(x):
 return 2 * x + np.sin(x)
<function f at 0x116080950>

	Denote vector variables and functions

Suppose we want to denote variables in R^3
>>> x = da.Var([1], [1, 0, 0])
>>> y = da.Var([2], [0, 1, 0])
>>> z = da.Var([3], [0, 0, 1])

Alternatively, users can use the following notation to declare the same variables
'x,y': x denotes the length of the derivative, y denotes the position of the 1
>>> x = da.Var([1], '3,0')
>>> y = da.Var([2], '3,1')
>>> z = da.Var([3], '3,2')

Suppose we want to denote an R^3 to R^1 function
f = x + y + z
>>> f
Var([6], [1 1 1])

Alternatively, the user can define the R^3 to R^1 function
by explicitly defining a da.Var vector with one entry:

>>> g = da.Var([2 * x + x * y])
>>> g
Var([4], [4 1 0])

Suppose we want to denote an R^3 to R^3 function
>>> f = da.Var([x, y ** 2, z ** 4])
>>> f
 Values:
 [1 4 81],
 Jacobian:
 [[1 0 0]
 [0 4 0]
 [0 0 108]]

Suppose we want to denote an R^1 to R^3 function
>>> x = da.Var([1])
>>> f = da.Var([x, np.sin(x), np.exp(x-1)])
>>> f
 Values:
 [1. 0.84147098 1.],
 Jacobian:
 [[1.]
 [0.54030231]
 [1.]]

Demo 1: \(\mathbb{R}^1 \rightarrow \mathbb{R}^1\)

Consider the case \(f(x) = \sin(x) + 5 \tan(x/2)\). We want to calculate the value and the first derivative of \(f(x)\) at \(x=\frac{\pi}{2}\).

Expect value of 6.0, derivative of 5.0
>>> x = da.Var([np.pi/2])
>>> f = np.sin(x) + 5 * np.tan(x/2)
>>> print(f.val)
[6.]
>>> print(f.der)
[5.]

Demo 2: \(\mathbb{R}^m \rightarrow \mathbb{R}^1\)

Consider the case \(f(x,y) = \sin(x) + \exp(y)\). We want to calculate the value and the jacobian of \(f(x,y)\) at \(x=\frac{\pi}{2}, y=1\).

Expect value of 3.71828183, jacobian of [0, 2.71828183]
>>> x = da.Var([np.pi/2], [1, 0])
>>> y = da.Var([1], [0, 1])
>>> f = np.sin(x) + np.exp(y)
>>> print(f.val)
[3.71828183]
>>> print(f.der)
[0. 2.71828183]

Demo 3: \(\mathbb{R}^1 \rightarrow \mathbb{R}^n\)

Consider the case \(f(x) = (\sin(x), x^2)\). We want to calculate the value and the Jacobian of \(f(x)\) at \(x=\frac{\pi}{2}\).

Expect value of [1. 2.4674011], jacobian of [[0], [3.14159265]]
>>> x = da.Var([np.pi/2], [1])
>>> f = da.Var([np.sin(x), x ** 2])
>>> f
 Values:
 [1. 2.4674011],
 Jacobian:
 [[0.]
 [3.14159265]]

Demo 4: \(\mathbb{R}^m \rightarrow \mathbb{R}^n\)

Consider the case \(f(x,y,z) = (\sin(x), 4y + z^3)\). We want to calculate the value and the jacobian of \(f(x,y,z)\) at \(x=\frac{\pi}{2}, y=3, z=-2\).

Expect value of [1, 4], jacobian of [[0 0 0], [0 4 12]]
>>> x = da.Var([np.pi/2], [1, 0, 0])
>>> y = da.Var([3], [0, 1, 0])
>>> z = da.Var([-2], [0, 0, 1])
>>> f = da.Var([np.sin(x), 4 * y + z ** 3])
>>> f
Values:
[1. 4.],
Jacobian:
[[0. 0. 0.]
 [0. 4. 12.]]

..Note:: Demos for additional features are listed in the corresponding additional features tab.

Background

The chain rule, gradient (Jacobian), computational graph, elementary
functions and several numerical methods serve as the mathematical
cornerstone for this software. The mathematical concepts here come from
CS 207 Lectures 9 and 10 on Autodifferentiation.

The Chain Rule

The chain rule is critical to AD, since the derivative of the function
with respect to the input is dependent upon the derivative of each
trace in the evaluation with respect to the input.

If we have \(h(u(x))\) then the derivative of \(h\) with
respect to \(x\) is:

\[\frac{\partial h}{\partial x} =\frac{\partial h}{\partial u} \cdot \frac{\partial u}{\partial x}\]

If we have another argument \(h(u, v)\) where \(u\) and
\(v\) are both functions of \(x\), then the derivative of
\(h(x)\) with respect to \(x\) is:

\[\frac{\partial h}{\partial x} =\frac{\partial h}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial h}{\partial v} \cdot \frac{\partial v}{\partial x}\]

Gradient and Jacobian

If we have \(x\in\mathbb{R}^{m}\) and function
\(h\left(u\left(x\right),v\left(x\right)\right)\), we want to
calculate the gradient of \(h\) with respect to \(x\):

\[\nabla_{x} h = \frac{\partial h}{\partial u}\nabla_x u + \frac{\partial h}{\partial v} \nabla_x v\]

In the case where we have a function
\(h(x): \mathbb{R}^m \rightarrow \mathbb{R}^n\), we write the
Jacobian matrix as follows, allowing us to store the gradient of each
output with respect to each input.

\[\begin{split}J = \begin{bmatrix}
 \frac{\partial h_1}{\partial x_1} &
 \frac{\partial h_1}{\partial x_2} & \ldots &
 \frac{\partial h_1}{\partial x_m} \\[1ex]
 \frac{\partial h_2}{\partial x_1} &
 \frac{\partial h_2}{\partial x_2} & \ldots &
 \frac{\partial h_2}{\partial x_m} \\[1ex]
 \vdots & \vdots & \ddots & \vdots \\[1ex]
 \frac{\partial h_n}{\partial x_1} &
 \frac{\partial h_n}{\partial x_2} & \ldots &
 \frac{\partial h_n}{\partial x_m}
\end{bmatrix}\end{split}\]

In general, if we have a function \(g\left(y\left(x\right)\right)\)
where \(y\in\mathbb{R}^{n}\) and \(x\in\mathbb{R}^{m}\). Then
\(g\) is a function of possibly \(n\) other functions, each of
which can be a function of \(m\) variables. The gradient of
\(g\) is now given by

\[\nabla_{x}g = \sum_{i=1}^{n}{\frac{\partial g}{\partial y_{i}}\nabla_x y_{i}\left(x\right)}.\]

The Computational Graph

Let us visualize what happens during the evaluation trace. The following
example is based on Lectures 9 and 10.
Consider the function:

\[f\left(x\right) = x - \exp\left(-2\sin^{2}\left(4x\right)\right)\]

If we want to evaluate \(f\) at the point \(x\), we construct a
graph where the input value is \(x\) and the output is \(y\).
Each input variable is a node, and each subsequent operation of the
execution trace applies an operation to one or more previous nodes (and
creates a node for constants when applicable).

[image: _images/computationgraph.png]
As we execute \(f(x)\) in the “forward mode”, we can propagate not
only the sequential evaluations of operations in the graph given
previous nodes, but also the derivatives using the chain rule.

Elementary functions

An elementary function is built up of a finite combination of constant
functions, field operations \((+, -, \times, \div)\), algebraic,
exponential, trigonometric, hyperbolic and logarithmic functions and
their inverses under repeated compositions. Below is a table of some
elementary functions and examples that we will include in our
implementation.

	Elementary Functions

	Example

	powers

	\(x^2\)

	roots

	\(\sqrt{x}\)

	exponentials

	\(e^{x}\)

	logarithms

	\(\log(x)\)

	trigonometrics

	\(\sin(x)\)

	inverse trigonometrics

	\(\arcsin(x)\)

	hyperbolics

	\(\sinh(x)\)

Note

Background for additional features, Newton’s root finding, Gradient Descent, BFGS and quadratic splines can be found in Additional Features.

Software Organization

Current directory structure

cs207-FinalProject/
|-- DeriveAlive/
| |-- DeriveAlive.py
| |-- __init__.py
| |-- optimize.py
| |-- rootfinding.py
| `-- spline.py
|-- demos/
| |-- Presentation.ipynb
| `-- surprise.py
|-- documentation/
| |-- docs/
| |-- documentation.pdf
| |-- milestone1.pdf
| `-- milestone2.pdf
|-- tests/
| |-- __init__.py
| |-- test_DeriveAlive.py
| |-- test_optimize.py
| |-- test_rootfinding.py
| `-- test_spline.py
|-- LICENSE
|-- __init__.py
|-- README.md
|-- requirements.txt
|-- setup.cfg
`-- setup.py

Basic modules and their functionality

	DeriveAlive: This module contains our custom library for
autodifferentiation. It includes functionality for a Var class
that contains values and derivatives, as well as class-specific
methods for the operations that our model implements (e.g., tangent,
sine, power, exponentiation, addition, multiplication, and so on).

	optimize: This module utilizes our custom library for
autodifferentiation to perform optimization. It includes
DeriveAlive.Var class-specific methods. Users can define a custom function to optimize, where this function is \(\mathbb{R}^{1} \rightarrow \mathbb{R}^{1}\) or \(\mathbb{R}^{m} \rightarrow \mathbb{R}^{1}\). If the function is \(\mathbb{R}^{m} \rightarrow \mathbb{R}^{1}\), it must take as input a list of \(m\) variables. Our suggestion is to extract the variables from this list on the first line of the user-defined function, and then use them individually. Furthermore, optimize allows for dataset compatability with regression optimization. A user can input a numpy matrix with \(m\) rows and \(n\) columns, where \(n >= 2\) and \(m >= 1\). The first \(n - 1\) columns denote the features of the data, and the final column represents the labels. The user must specify the function to optimize as “mse”. Then, the function will find a local minimum of the mean squared error objective function. Finally, the module allows for static and animated plots in 2D to 4D using plot_results.

	rootfinding: This module utilizes our custom library for
autodifferentiation to find roots of a given \(\mathbb{R}^{1} \rightarrow \mathbb{R}^{1}\)
or \(\mathbb{R}^{m} \rightarrow \mathbb{R}^{1}\) function. It includes
DeriveAlive.Var class-specific methods for Newton’s method. It also allows the user to visualize static or animated results in 2D to 4D using plot_results.

	spline: This module utilizes our custom library for
autodifferentiation to draw quadratic splines and return corresponding coefficients for quadratic functions of a given scalar function. It includes DeriveAlive.Var class-specific methods for quadratic spline generation.

Test Suite

All test files live in tests/ folder.

	test_DeriveAlive: This is a test suite for DeriveAlive. It includes tests
for scalar functions and vector functions to ensure that the DeriveAlive module
properly calculates values of scalar functions and gradients with
respect to scalar inputs, and vector functions and gradients with
respect to vector inputs.

	test_rootfinding: This is a test suite for rootfinding.

	test_optimize: This is a test suite for optimization.

	test_spline: This is a test suite for spline.

We use Travis CI mfor automatic testing for each push, and Coveralls for
line coverage metrics. We have already set up these integrations, with
badges included in the README.md. Users may run the test suite by
navigating to the tests/ folder and running the command pytest test_<module>.py
from the command line (or pytest tests if the user is outside the
tests/ folder).

Installation using PyPI and GitHub

We provide two ways for our package installation: PyPI and GitHub.

	Installation using PyPI

We also utilized the Python Package Index (PyPI) for distributing
our package. PyPI is the official third-party software repository
for Python and primarily hosts Python packages in the form of
archives called sdists (source distributions) or precompiled
wheels. The url to the project is
https://pypi.org/project/DeriveAlive/.

	Create a virtual environment and activate it

If you don't have virtualenv, install it
sudo easy_install virtualenv
Create virtual environment
virtualenv env
Activate your virtual environment
source env/bin/activate

	Install DeriveAlive using pip. In the terminal, type:

pip install DeriveAlive

	Run module tests before beginning.

Navigate to https://pypi.org/project/DeriveAlive/#files
Download tar.gz folder, unzip, and enter the folder
pytest tests

	Use DeriveAlive Python package # (see demo in Section 2.2)

python
>>> from DeriveAlive import DeriveAlive as da
>>> import numpy as np
>>> x = da.Var([np.pi/2])
>>> x
Var([1.57079633], [1.])
...
>>> quit()

deactivate virtual environment
deactivate

	Installation from GitHub

	
	Download the package from GitHub to your folder via these commands

	in the terminal:

mkdir test_cs207
cd test_cs207/
git clone https://github.com/cs207-group19/cs207-FinalProject.git
cd cs207-FinalProject/

	Create a virtual environment and activate it

If you don't have virtualenv, install it
sudo easy_install virtualenv
Create virtual environment
virtualenv env
Activate your virtual environment
source env/bin/activate

	Install required packages and run module tests in tests/

pip install -r requirements.txt
pytest tests

	Use DeriveAlive Python package (see demo in Section 2.2)

python
>>> import DeriveAlive.DeriveAlive as da
>>> import numpy as np
>>> x = da.Var([np.pi/2])
>>> x
Var([1.57079633], [1.])
...
>>> quit()

deactivate virtual environment
deactivate

Implementation

Forward Mode Implementation

	Variable domain: The variables are defined as real numbers, hence any
calculations or results involving complex numbers will be excluded
from the package.

	Type of user input: Regardless of the input type (e.g., an int, a float or a
list or a numpy array), the Var class will automatically convert
the input into a numpy array.

	Core data structures: The core data structures will be classes, lists
and numpy arrays.

	Classes will help us provide an API for differentiation and custom
functions, including custom methods for our elementary functions.

	Numpy arrays are the main data structure during the calculation.
We store the list of derivatives as a numpy array so that we can
apply entire functions to the array, rather than to each entry
separately. Each trace Var has a numpy array of derivatives
where the length of the array is the number of input variables in
the function. In the vector-vector case, if we have a function
\(f: \mathbb{R}^m \rightarrow \mathbb{R}^n\) or \(f: \mathbb{R}^1 \rightarrow \mathbb{R}^n\), we can process
this as \(f = [f_1, f_2, \ldots, f_n]\), where each
\(f_i\) is a function
\(f_i: \mathbb{R}^m \rightarrow \mathbb{R}\). Our
implementation can act as a wrapper over these functions, and we
can evaluate each \(f_i\) independently, so long as we define
\(f_i\) in terms of the \(m\) inputs. Currently, the module
supports both scalar to scalar, scalar to vector, vector to scalar and vector to vector functions.

	Our implementation plan includes 1 class which accounts for
trace variables and derivatives with respect to each input variable.

	Var class. The class instance itself has two main attributes:
the value and the evaluated derivatives (Jacobian) with respect to each
input. Within the class we redefine the elementary functions and
basic algebraic functions, including both evaluation and
derivation. Since our computation graph includes “trace”
variables, this class will account for each variable.

API

DeriveAlive.DeriveAlive

	Class attributes and methods:

	Attributes in Var: self.var, self.der. To cover
vector-to-vector cases, we implement our self.var and
self.der as numpy arrays, in order to account for derivatives
with respect to each input variable. Also the constructor checks
whether the values and derivatives are integers, floats, or lists,
and transforms them into numpy arrays automatically.

	We have overloaded elementary mathematical operations such as
addition, subtraction, multiplication, division, sine, pow, log,
etc. that take in 1 Var type, or 2 types, or
1 Var type and 1 constant, and return a new Var (i.e.
the next “trace” variable). All other operations on constants will
use the standard Python library. In each Var, we will store as
attributes the value of the variable (which is calculated based on
the current operation and previous trace variables) and the
evaluated gradient of the variable with respect to each input
variable.

	Methods in Var:

	__init__: initialize a Var class object, regardless of
the user input, with values and derivatives stored as numpy
arrays.

	__repr__: overload the print format, prints self in the
form of Var([val], [der]) when self is a scalar or constant;
prints self in the form of Values([val]) Jacobian([der])
when self is a vector.

	__add__: overload add function to handle addition of
Var class objects and addition of Var and non-Var
objects.

	__radd__: preserve addition commutative property.

	__sub__: overload subtraction function to handle
subtraction of Var class objects and subtraction between
Var and non-Var objects.

	__rsub__: allow subtraction for \(a - \texttt{Var}\)
case where a is a float or an integer.

	__mul__: overload multiplication function to handle
multiplication of Var class objects and multiplication
between Var and non-Var objects.

	__rmul__: preserve multiplication commutative property.

	__truediv__: overload division function to handle division
of Var class objects over floats or integers.

	__rtruediv__: allow division for
\(a \div \texttt{Var}\) case where \(a\) is a float or
an integer.

	__neg__: return negated Var.

	__abs__: return the absolute value of Var.

	__eq__: return True if two Var objects have the
same value and derivative, False otherwise.

	__ne__: return False if two Var objects have the
same value and derivative, True otherwise.

	__lt__: return True if the value of Var object is
less than an integer / a float / the value of Var object,
False otherwise.

	__le__: return True if the value of Var object is
less than or equal to an integer / a float / the value of
Var object, False otherwise.

	__gt__: return True if the value of Var object is
greater than an integer / a float / the value of Var object,
False otherwise.

	__ge__: return True if the value of Var object is
greater than or equal to an integer / a float / the value of
Var object, False otherwise.

	__pow__, __rpow__, pow: extend power functions to
Var class objects.

	sin, cos, tan: extend trigonometric functions to
Var class objects.

	arcsin, arccos, arctan: extend inverse
trigonometric functions to Var class objects.

	sinh, cosh, tanh: extend hyperbolic functions to
Var class objects.

	sqrt: return the square root of Var class objects.

	log: extend logarithmic functions with custom base input
to Var class objects.

	exp: extend exponential functions to Var class objects.

	logistic: return the logistic function value with input of
Var objects.

	External dependencies:

	NumPy - This provides an API for a large collection of
high-level mathematical operations. In addition, it provides
support for large, multi-dimensional arrays and matrices.

	doctest - This module searches for pieces of text that look
like interactive Python sessions (typically within the
documentation of a function), and then executes those sessions to
verify that they work exactly as shown.

	pytest - This is an alternative, more Pythonic way of writing
tests, making it easy to write small tests, yet scales to support
complex functional testing. We plan to use this for a
comprehensive test suite.

	setuptools - This package allows us to create a package out of
our project for easy distribution. See more information on
packaging instructions here: https://packaging.python.org/tutorials/packaging-projects/.

	Test suites: Travis CI, Coveralls

	Elementary functions

	Our explanation of our elementary functions is included in the
“Class attributes and methods” section above. For the elementary
functions, we defined our own custom methods within the Var
class so that we can calculate, for example, the \(\sin(x)\)
of a variable \(x\) using a package such as numpy, and
also store the proper gradient (\(\cos(x)dx\)) to propagate
the gradients forward. For example, consider a scalar function
where self.val contains the current evaluation trace and
self.der is a numpy array of the derivative of the current
trace with respect to the input. When we apply \(\sin\), we
propagate as follows:

def sin(self):
 val = np.sin(self.val)
 der = np.cos(self.val) * self.der
 return Var(val, der)

The structure of each elementary function is that it calculates
the new value (based on the operation) and the new derivative, and
then returns a new Var with the updated arguments.

DeriveAlive.rootfinding

Detailed methods with inputs and return information are listed in Additional Features - Root Finding.

	Methods:

	NewtonRoot: return a root of a function \(f: \mathbb{R}^m \Rightarrow \mathbb{R}^1\)

	plot_results: See docstring.

	External dependencies:

	DeriveAlive

	NumPy

	matplotlib.pyplot

	Test suites: Travis CI, Coveralls

DeriveAlive.optimize

Detailed methods with inputs and return information are listed in Additional Features - Optimization.

	Methods:

	GradientDescent: solve for a local minimum of a function \(f: \mathbb{R}^m \Rightarrow \mathbb{R}^1\). If \(f\) is a convex function, then the local minimum is a global minimum.

Note

Supports data set compatibility and mean squared error optimization.

	BFGS: sovle for a local stationary point, i.e. \(\nabla f =0\), of a function \(f: \mathbb{R}^m \Rightarrow \mathbb{R}^1\).

	plot_results: See docstring.

	External dependencies:

	DeriveAlive

	NumPy

	matplotlib.pyplot

	Test suites: Travis CI, Coveralls

DeriveAlive.spline

Detailed methods with inputs and return information are listed in Additional Features - Quadratic Splines.

	Methods:

	quad_spline_coeff: calculate the coefficients of quadratic splines.

	spline_points: get the coordinates of points on the corresponding splines.

	quad_spline_plot: plot the original function and the corresponding splines.

	spline_error: calculate the average absolute error of the spline and the original function at one point.

	External dependencies:

	DeriveAlive

	NumPy

	matplotlib.pyplot

	Test suites: Travis CI, Coveralls

Additional Features

Root finding

Background

Newton root finding starts from an initial guess for \(x_1\) and converges to \(x\) such that \(f(x) = 0\). The algorithm is iterative. At each step \(t\), the algorithm finds a line (or plane, in higher dimensions) that is tangent to \(f\) at \(x_t\). The new guess for \(x_{t+1}\) is where the tangent line crosses the \(x\)-axis. This generalizes to \(m\) dimensions.

	Algorithm (univariate case)

	for \(t\) iterations or until step size < tol:

	\(x_{t+1} \leftarrow x_{t} - \frac{f(x_t)}{f'(x_t)}\)

	Algorithm (multivariate case)

	for \(t\) iterations or until step size < tol:

	\(\textbf{x}_{t+1} \leftarrow \textbf{x}_t - (J(f)(\textbf{x}_t))^{-1}f(\textbf{x}_t)\)

In the multivariate case, \(J(f)\) is the Jacobian of \(f\). If \(J(f)\) is non-square, we use the pseudoinverse.

Here is an example in the univariate case:

A common application of root finding is in Lagrangian optimization. For example, consider the Lagrangian \(\mathcal{L}(\textbf{b}, \lambda)\). One can solve for the weights \(\textbf{b}, \lambda\) such that \(\frac{\partial \mathcal{L}}{\partial b_j} = \frac{\partial \mathcal{L}}{\partial \lambda} = 0\).

Implementation

	Methods

	NewtonRoot: return a root of a function \(f: \mathbb{R}^m \Rightarrow \mathbb{R}^1\)

	input:

	f: function of interest, callable. If \(f\) is a scalar to scalar function, then define \(f\) as follows:

	1
2
3

	def f(x):
 # Use x in function
 return x ** 2 + np.exp(x)

If \(f\) is a function of multiple scalars (i.e. \(\mathbb{R}^m \Rightarrow \mathbb{R}^1\)), the arguments to \(f\) must be passed in
as a list. In this case, define \(f\) as follows:

	1
2
3

	def f(variables):
 x, y, z = variables
 return x ** 2 + y ** 2 + z ** 2 + np.sin(x)

	x: int, float, or da.Var (univariate), or list of int, float, or da.Var objects (multivariate). Inital guess for a root of \(f\). If \(f\) is a scalar to scalar function (i.e. \(\mathbb{R}^1 \Rightarrow \mathbb{R}^1)\), and the initial guess for the root is 1, then x = [da.Var(1)]. If \(f\) is a function of multiple scalars, with initial guess for the root as (1, 2, 3), then the user can define x as:

	1

	x = [1, 2, 3]

	iters: int, optional, default=2000. The maximum number of iterations to run the Newton root finding algorithm. The algorithm will run for min \((t, iters)\) iterations, where \(t\) is the number of steps until tol is satisfied.

	tol: int or float, optional, default=1e-10. If the size of the update step (L2 norm in the case of \(\mathbb{R}^m \Rightarrow \mathbb{R}^1)\) is smaller than tol, then the algorithm will add that step and then terminate, even if the number of iterations has not reached iters.

	return:

	root: da.Var \(\in \mathbb{R}^m\). The val attribute contains a numpy array of the root that the algorithm found in \(min(iters, t)\) iterations (\(iters, t\) defined above). The der attribute contains the Jacobian value at the specified root.

	var_path: a numpy array (\(\mathbb{R}^{n \times m}\)), where \(n = min(iters, t)\) is the number of steps of the algorithm and \(m\) if the dimension of the root, where rows of the array are steps taken in consecutive order.

	g_path: a numpy array (\(\mathbb{R}^{n \times 1}\)), containing the consecutive steps of the output of \(f\) at each guess in var_path.

	External dependencies

	DeriveAlive

	NumPy

	matplotlib.pyplot

Demo

>>> from DeriveAlive import rootfinding as rf

Case 1: \(f = sin(x)\) with starting point \(x_0= \frac{3\pi}{2}\). Note: Newton method is not guaranteed to converge when \(f\prime(x_0)= 0\). In our case, if the current guess has derivative of 0, we randomly set the derivative to be \(\pm1\) and move in that directino to avoid getting stuck and avoid calculating an update step that has an extreme magnitude (which would occur if the derivative is very close to 0).

define f function
>>> f_string = 'f(x) = sin(x)'

>>> def f(x):
 return np.sin(x)

>>> # Start at 3*pi/2
>>> x0 = 3 * np.pi / 2

 # finding the root
>>> for val in [np.pi - 0.25, np.pi, 1.5 * np.pi, 2 * np.pi - 0.25, 2 * np.pi + 0.25]:
 solution, x_path, y_path = rf.NewtonRoot(f, x0)

 # visualize the trace
>>> x_lims = -2 * np.pi, 3 * np.pi
>>> y_lims = -2, 2
>>> rf.plot_results(f, x_path, y_path, f_string, x_lims, y_lims)

[image: _images/7_2_3_1.png]
Case 2: \(f = x - \exp(-2\sin(4x)sin(4x)+0.3\) with starting point \(x_0 = 0\).

define f function
f_string = 'f(x) = x - e^{-2 * sin(4x) * sin(4x)} + 0.3'

>>> def f(x):
 return x - np.exp(-2.0 * np.sin(4.0 * x) * np.sin(4.0 * x)) + 0.3

start at 0
>>> x0 = 0

finding the root
>>> for val in np.arange(-0.75, 0.8, 0.25):
 solution, x_path, y_path = rf.NewtonRoot(f, x0)

visualize the trace
>>> x_lims = -2, 2
>>> y_lims = -2, 2
>>> rf.plot_results(f, x_path, y_path, f_string, x_lims, y_lims)

[image: _images/7_2_3_2.png]
Case 3: \(f(x, y) = x^2 + 4y^2-2x^2y +4\) with starting points \(x_0 =-8.0, y_0 = -5.0\).

define f function
>>> f_string = 'f(x, y) = x^2 + 4y^2 -2x^2y + 4'

>>> def f(variables):
 x, y = variables
 return x ** 2 + 4 * y ** 2 - 2 * (x ** 2) * y + 4

start at x0=−8.0,y0= −5
>>> x0 = -8.0
>>> y0 = -5.0
>>> init_vars = [x0, y0]

finding the root and visualize the trace
>>> solution, xy_path, f_path = rf.NewtonRoot(f, init_vars)
>>> rf.plot_results(f, xy_path, f_path, f_string, threedim=True)

[image: _images/7_2_3_3.png]
Case 4: \(f(x, y, z) = x^2 + y^2 + z^2\) with starting points \(x_0 =1, y_0 = -2, z_0 = 5\).

define f function
>>> f_string = 'f(x, y, z) = x^2 + y^2 + z^2'

>>> def f(variables):
 x, y, z = variables
 return x ** 2 + y ** 2 + z ** 2 + np.sin(x) + np.sin(y) + np.sin(z)

start at
>>> x0= 1
>>> y0= -2
>>> z0= 5
>>> init_vars = [x0, y0, z0]

finding the root and visualize the trace
>>> solution, xyz_path, f_path = rf.NewtonRoot(f, init_vars)
>>> m = len(solution.val)
>>> rf.plot_results(f, xyz_path, f_path, f_string, fourdim=True)

[image: _images/7_2_3_4.png]

Optimization

Background

Gradient Descent is used to find the local minimum of a function \(f\) by taking locally optimum steps in the direction of steepest descent. A common application is in machine learning when a user desires to find optimal weights to minimize a loss function.

Here is a visualization of Gradient Descent on a convex function of 2 variables:

[image: _images/gradient_descent.png]
BFGS, short for “Broyden–Fletcher–Goldfarb–Shanno algorithm”, seeks a stationary point of a function, i.e. where the gradient is zero. In quasi-Newton methods, the Hessian matrix of second derivatives is not computed. Instead, the Hessian matrix is approximated using updates specified by gradient evaluations (or approximate gradient evaluations).

Here is a pseudocode of the implementation of BFGS.

[image: _images/bfgs.png]

Implementation

	Methods

	GradientDescent: solve for a local minimum of a function \(f: \mathbb{R}^m \Rightarrow \mathbb{R}^1\). If \(f\) is a convex function, then the local minimum is a global minimum.

	input:

	f: function of interest, callable. In machine learning applications, this should be the cost function. For example, if solving for optimal weights to minimize a cost function \(f\), then \(f\) can be defined as \(\frac{1}{2m}\) times the sum of \(m\) squared residuals.

If \(f\) is a scalar to scalar function, then define \(f\) as follows:

	1
2
3

	def f(x):
 # Use x in function
 return x ** 2 + np.exp(x)

If \(f\) is a function of multiple scalars (i.e. \(\mathbb{R}^m \Rightarrow \mathbb{R}^1\)), the arguments to \(f\) must be passed in
as a list. In this case, define \(f\) as follows:

	1
2
3

	def def f(variables):
 x, y, z = variables
 return x ** 2 + y ** 2 + z ** 2 + np.sin(x)

	x: int, float, or da.Var (univariate), or list of int, float, or da.Var objects (multivariate). Initial guess for a root of \(f\). If \(f\) is a scalar to scalar function (i.e. \(\mathbb{R}^1 \Rightarrow \mathbb{R}^1)\), and the initial guess for the root is 1, then a valid x is x = 1. If \(f\) is a function of multiple scalars, with initial guess for the root as (1, 2, 3), then a valid definition of x is as follows:

	iters: int, optional, default=2000. The maximum number of iterations to run the Newton root finding algorithm. The algorithm will run for min \((t, iters)\) iterations, where \(t\) is the number of steps until tol is satisfied.

	tol: int or float, optional, default=1e-10. If the size of the update step (L2 norm in the case of \(\mathbb{R}^m \Rightarrow \mathbb{R}^1)\) is smaller than tol, then the algorithm will add that step and then terminate, even if the number of iterations has not reached iters.

	return:

	minimum: da.Var \(\in \mathbb{R}^m\). The val attribute contains a numpy array of the minimum that the algorithm found in \(min(iters, t)\) iterations (\(iters, t\) defined above). The der attribute contains the Jacobian value at the specified root.

	var_path: a numpy array (\(\mathbb{R}^{n \times m}\)), where \(n = min(iters, t)\) is the number of steps of the algorithm and \(m\) if the dimension of the minimum, where rows of the array are steps taken in consecutive order.

	g_path: a numpy array (\(\mathbb{R}^{n \times 1}\)), containing the consecutive steps of the output of \(f\) at each guess in var_path.

	External dependencies

	DeriveAlive

	NumPy

	matplotlib.pyplot

Demo

>>> import DeriveAlive.optimize as opt
>>> import numpy as np
>>> import matplotlib.pyplot as plt

Case 1: Minimize quartic function \(f(x) = x^4\). Get stuck in local minimum.

>>> def f(x):
 return x ** 4 + 2 * (x ** 3) - 12 * (x ** 2) - 2 * x + 6

 # Function string to include in plot
>>> f_string = 'f(x) = x^4 + 2x^3 -12x^2 -2x + 6'

>>> x0 = 4
>>> solution, xy_path, f_path = opt.GradientDescent(f, x0, iters=1000, eta=0.002)
>>> opt.plot_results(f, xy_path, f_path, f_string, x_lims=(-6, 5), y_lims=(-100, 70))

[image: _images/7_2_3_5.png]
Case 2: Minimize Rosenbrock’s function \(f(x, y) = 4(y - x^2)^2 + (1 - x)^2\). Global minimum: 0 at \((x,y)=(1, 1)\).

Rosenbrock function with leading coefficient of 4
>>> def f(variables):
 x, y = variables
 return 4 * (y - (x ** 2)) ** 2 + (1 - x) ** 2

Function string to include in plot
>>> f_string = 'f(x, y) = 4(y - x^2)^2 + (1 - x)^2'

>>> x_val, y_val = -6, -6
>>> init_vars = [x_val, y_val]
>>> solution, xy_path, f_path = opt.GradientDescent(f, init_vars, iters=25000, eta=0.002)
>>> opt.plot_results(f, xy_path, f_path, f_string, x_lims=(-7.5, 7.5), threedim=True)

[image: _images/7_2_3_6.png]
>>> x_val, y_val = -2, 5
>>> init_vars = [x_val, y_val]
>>> solution, xy_path, f_path = opt.GradientDescent(f, init_vars, iters=25000, eta=0.002)
>>> opt.plot_results(f, xy_path, f_path, f_string, x_lims=(-7.5, 7.5), threedim=True)

[image: _images/7_2_3_7.png]
Case 3: Minimize Easom’s function: \(f(x, y) = -\cos(x)\cos(y)\exp(-((x - \pi)^2 + (y - \pi)^2))\). Global minimum: -1 at \((x,y)=(\pi, \pi)\).

Easom's function
>>> def f(variables):
 x, y = variables
 return -np.cos(x) * np.cos(y) * np.exp(-((x - np.pi) ** 2 + (y - np.pi) ** 2))

Function string to include in plot
>>> f_string = 'f(x, y) = -\cos(x)\cos(y)\exp(-((x-\pi)^2 + (y-\pi)^2))'

Initial guess
>>> x0 = 1.5
>>> y0 = 1.75
>>> init_vars = [x0, y0]

Visulaize gradient descent
solution, xy_path, f_path = opt.GradientDescent(f, init_vars, iters=10000, eta=0.3)
opt.plot_results(f, xy_path, f_path, f_string, threedim=True)

[image: _images/7_2_3_8.png]
Case 4: Machine Learning application: minimize mean squared error in regression

\[\begin{split}\begin{align}
\hat{y_i} &= \textbf{w}^\top \textbf{x}_i \\
MSE(X, y) &= \frac{1}{m} \sum_{i=1}^m (\textbf{w}^\top\textbf{x}_i - y_i)^2
\end{align}\end{split}\]

where \(\textbf{w}\) contains an extra dimension to fit the intercept of the features.
- Example dataset (standardized): 47 homes from Portland, Oregon. Features: area (square feet), number of bedrooms. Output: price (in thousands of dollars).

>>> f = "mse"
>>> init_vars = [0, 0, 0]

Function string to include in plot
>>> f_string = 'f(w_0, w_1, w_2) = (1/2m)\sum_{i=0}^m (w_0 + w_1x_{i1} + w_2x_{i2} - y_i)^2'

Visulaize gradient descent
>>> solution, w_path, f_path, f = opt.GradientDescent(f, init_vars, iters=2500, data=data)
>>> print ("Gradient descent optimized weights:\n{}".format(solution.val))
>>> opt.plot_results(f, w_path, f_path, f_string, x_lims=(-7.5, 7.5), fourdim=True)
Gradient descent optimized weights:
[340.41265957 110.62984204 -6.64826603]

[image: _images/7_2_3_9.png]
[image: _images/7_2_3_10.png]
Case 5: Find stationary point of \(f(x) = \sin(x)\). Note: BFGS finds stationary point, which can be maximum, not minimum.

>>> def f(x):
 return np.sin(x)

>>> f_string = 'f(x) = sin(x)'

>>> x0 = -1
>>> solution, x_path, f_path = opt.BFGS(f, x0)
>>> anim = opt.plot_results(f, x_path, f_path, f_string, x_lims=(-2 * np.pi, 2 * np.pi), y_lims=(-1.5, 1.5), bfgs=True)

[image: _images/7_2_3_11.png]
Case 6: Find stationary point of Rosenbrock function: \(f(x, y) = 4(y - x^2)^2 + (1 - x)^2\). Stationary point: 0 at \((x,y)=(1, 1)\).

>>> def f(variables):
 x, y = variables
 return 4 * (y - (x ** 2)) ** 2 + (1 - x) ** 2

>>> f_string = 'f(x, y) = 4(y - x^2)^2 + (1 - x)^2'

>>> x0, y0 = -6, -6
>>> init_vars = [x0, y0]
>>> solution, xy_path, f_path = opt.BFGS(f, init_vars, iters=25000)
>>> xn, yn = solution.val
>>> anim = opt.plot_results(f, xy_path, f_path, f_string, x_lims=(-7.5, 7.5), y_lims=(-7.5, 7.5), threedim=True, bfgs=True)

[image: _images/7_2_3_12.png]

Quadratic Splines

Background

The DeriveAlive package can be used to calculate quadratic splines
since it automatically returns the first derivative of a function at a
given point.

We aim to construct a piecewise quadratic spline \(s(x)\) using
\(N\) equally-sized intervals over an interval for \(f(x)\).
Define \(h=1/N\), and let \(s_{k}(x)\) be the spline over the
range \([kh,(k+1)h]\) for \(k=0,1,\ldots,N-1\). Each
\(s_k(x)=a_kx^2+b_kx+c_k\) is a quadratic, and hence the spline
has \(3N\) degrees of freedom in total.

Example: \(f(x) = 10^x, x \in [0,1]\), with \(N=10\) intervals,
the spline coefficients satisfy the following constraints:

	Each \(s_k(x)\) should match the function values at both of its
endpoints, so that \(s_k(kh)=f(kh)\) and
\(s_k((k+1)h) =f((k+1)h)\). (Provides \(2N\) constraints.)

	At each interior boundary, the spline should be differentiable, so
that \(s_{k-1}(kh)= s_k(kh)\) for \(k=1,\ldots,N-1\).
(Provides \(N-1\) constraints.)

	Since \(f'(x+1)=10f'(x)\), let \(s'_{N-1}(1) = 10s'_0(0)\).
(Provides \(1\) constraint.)

Since there are \(3N\) constraints for \(3N\) degrees of
freedom, there is a unique solution.

Implementation

	Methods

	quad_spline_coeff: calculate the coefficients of quadratic
splines

	input:

	f: function of interest

	xMin: left endpoint of the \(x\) interval

	xMax: right endpoint of the \(x\) interval

	nIntervals: number of intervals that you want to slice
the original function

	return:

	y: the right hand side of \(Ax=y\)

	A: the sqaure matrix in the left hand side of
\(Ax=y\)

	coeffs: coefficients of \(a_i, b_i, c_i\)

	ks: points of interest in the \(x\) interval as
DeriveAlive objects

	spline_points: get the coordinates of points on the
corresponding splines

	input:

	f: function of interest

	coeffs: coefficients of \(a_i, b_i, c_i\)

	ks: points of interest in the \(x\) interval as
DeriveAlive objects

	nSplinePoints: number of points to draw each spline

	return:

	spline_points: a list of spline points \((x,y)\) on
each \(s_i\)

	quad_spline_plot: plot the original function and the
corresponding splines

	input:

	f: function of interest

	coeffs: coefficients of \(a_i, b_i, c_i\)

	ks: points of interest in the \(x\) interval as
DeriveAlive objects

	nSplinePoints: number of points to draw each spline

	return:

	fig: the plot of \(f(x)\) and splines

	spline_error: calculate the average absolute error of the
spline and the original function at one point

	input:

	f: function of interest

	spline_points: a list of spline points \((x,y)\) on
each \(s_i\)

	return:

	error: average absolute error of the spline and the
original function on one given interval

	External dependencies

	DeriveAlive

	NumPy

	matplotlib.pyplot

Demo

>>> import DeriveAlive.spline as sp
>>> import numpy as np
>>> import matplotlib.pyplot as plt

Case 1: Plot the quadratic spline of \(f_1(x) = 10^x, x \in [-1, 1]\) with
10 intervals.

>>> def f1(var):
 return 10**var

>>> xMin1 = -1
>>> xMax1 = 1
>>> nIntervals1 = 10
>>> nSplinePoints1 = 5

>>> y1, A1, coeffs1, ks1 = sp.quad_spline_coeff(f1, xMin1, xMax1, nIntervals1)
>>> fig1 = sp.quad_spline_plot(f1, coeffs1, ks1, nSplinePoints1)
>>> spline_points1 = sp.spline_points(f1, coeffs1, ks1, nSplinePoints1)
>>> sp.spline_error(f1, spline_points1)
0.0038642295476342416

>>> fig1

[image: _images/7_3_3_1.png]
Case 2: Plot the quadratic spline of \(f_2(x) = x^3, x \in [-1, 1]\) with 10 intervals.

>>> def f2(var):
 return var**3

>>> xMin2 = -1
>>> xMax2 = 1
>>> nIntervals2 = 10
>>> nSplinePoints2 = 5

>>> y2, A2, coeffs2, ks2 = sp.quad_spline_coeff(f2, xMin2, xMax2, nIntervals2)
>>> fig2 = sp.quad_spline_plot(f2, coeffs2, ks2, nSplinePoints2)
>>> spline_points2 = sp.spline_points(f2, coeffs2, ks2, nSplinePoints2)
>>> sp.spline_error(f2, spline_points2)
0.0074670329670330216

>>> fig2

[image: _images/7_3_3_2.png]
Case 3: Plot the quadratic spline of \(f_3(x) = \sin(x), x \in [-1,1]\) and \(x \in [-\pi, \pi]\) with 5 intervals and 10 intervals.

>>> def f3(var):
 return np.sin(var)

>>> xMin3 = -1
>>> xMax3 = 1
>>> nIntervals3 = 5
>>> nSplinePoints3 = 5

>>> y3, A3, coeffs3, ks3 = sp.quad_spline_coeff(f3, xMin3, xMax3, nIntervals3)
>>> fig3 = sp.quad_spline_plot(f3, coeffs3, ks3, nSplinePoints3)
>>> spline_points3 = sp.spline_points(f3, coeffs3, ks3, nSplinePoints3)
>>> sp.spline_error(f3, spline_points3)
0.015578205778177232

>>> fig3

[image: _images/7_3_3_3.png]
>>> xMin4 = -1
>>> xMax4 = 1
>>> nIntervals4 = 10
>>> nSplinePoints4 = 5

>>> y4, A4, coeffs4, ks4 = sp.quad_spline_coeff(f3, xMin4, xMax4, nIntervals4)
>>> fig4 = sp.quad_spline_plot(f3, coeffs4, ks4, nSplinePoints4)
>>> spline_points4 = sp.spline_points(f3, coeffs4, ks4, nSplinePoints4)
>>> sp.spline_error(f3, spline_points4)
0.0034954287455489196

>>> fig4

[image: _images/7_3_3_4.png]

Note

We can see that the quadratic splines do not work that well with linear-ish functions. While adding more intervals may help to make the approximated splines better.

Casee 4: Here we demonstrate that the more intervals will make the splines approximations better using a \(log-log\) plot of the absolute average error with respect to :math: frac{1}{N}` with \(f(x) = 10^x, x \in [-\pi, \pi]\) at intervals from 5 to 100.

>>> def f(var):
 return 10 ** var

>>> xMin = -sp.np.pi
>>> xMax = sp.np.pi
>>> nIntervalsList = sp.np.arange(1, 50, 1)
>>> nSplinePoints = 10
>>> squaredErrorList = []

>>> for nIntervals in nIntervalsList:
 y, A, coeffs, ks = sp.quad_spline_coeff(f, xMin, xMax, nIntervals)
 spline_points = sp.spline_points(f, coeffs, ks, nSplinePoints)
 error = sp.spline_error(f, spline_points)
 squaredErrorList.append(error)

>>> plt.figure()

>>> coefficients = np.polyfit(np.log10(2*np.pi/nIntervalsList), np.log10(squaredErrorList), 1)
>>> polynomial = np.poly1d(coefficients)
>>> ys = polynomial(np.log10(2*np.pi/nIntervalsList))
>>> plt.plot(np.log10(2*np.pi/nIntervalsList), ys, label='linear fit')
>>> plt.plot(np.log10(2*np.pi/nIntervalsList), np.log10(squaredErrorList), label='actual error plot')
>>> plt.xlabel(r'$\log(1/N)$')
>>> plt.ylabel(r'$\log(average error)$')
>>> plt.legend()
>>> plt.title('loglog plot of 1/N vs. average error')
>>> plt.show()

[image: _images/7_3_3_5.png]
>>> beta, alpha = coefficients[0], 10**coefficients[1]
>>> beta, alpha
(2.2462166565957835, 11.414027075895813)

Note

We can see in the \(log-log\) plot that the log of absolute average error is proportional to the log of \(\frac{1}{N}\), i.e. \(E_{1/N} \approx 11.4(\dfrac{1}{N})^{2.25}\).

Drawing with Splines

This graph is shipped within DeriveAlive package as a surprise.

We want to draw a graph based on the follow 20 functions.

	\(f_1(x) = \frac{-1}{0.5^2} x^2 + 1, x \in [-0.5, 0]\)

	\(f_2(x) = \frac{1}{0.5^2} x^2 - 1, x \in [-0.5, 0]\)

	\(f_3(x) = \frac{-1}{0.5} x^2 + 1, x \in [0, 0.5]\)

	\(f_4(x) = \frac{1}{0.5} x^2 - 1, x \in [0, 0.5]\)

	\(f_6(x) = \frac{-1}{0.5} (x-1.5)^2 + 1, x \in [1, 1.5]\)

	\(f_7(x) = \frac{1}{0.5} (x-1.5)^2 - 1, x \in [1, 1.5]\)

	\(f_8(x) = \frac{-1}{0.5} (x-1.5)^2, x \in [1.5, 2]\)

	\(f_9(x) = \frac{-1}{0.5} (x-1.5)^2 + 1, x \in [1.5, 2]\)

	\(f_{10}(x) = \frac{1}{0.5} (x-1.5)^2 - 1, x \in [1.5, 2]\)

	\(f_{11}(x) = \frac{-1}{0.5} (x-3)^2 + 1, x \in [2.5, 3]\)

	\(f_{12}(x) = \frac{-1}{0.5} (x-3)^2 + 1, x \in [3, 3.5]\)

	\(f_{13}(x) = 1.5x - 4.75, x \in [2.5, 3.5]\)

	\(f_{14}(x) = -1, x \in [2.5, 3.5]\)

	\(f_{15}(x) = \frac{-1}{0.5^2} (x-4.5)^2 + 1, x \in [4, 4.5]\)

	\(f_{16}(x) = \frac{1}{0.5^2} (x-4.5)^2 - 1, x \in [4, 4.5]\)

	\(f_{17}(x) = \frac{-1}{0.5^2} (x-4.5)^2 + 1, x \in [4, 4.5]\)

	\(f_{18}(x) = \frac{1}{0.5^2} (x-4.5)^2 - 1, x \in [4.5, 5]\)

	\(f_{19}(x) = 1, x \in [5.5, 6.5]\)

	\(f_{20}(x) = \frac{-1}{(-0.75)^2} (x-6.5)^2 + 1, x \in [5.75, 6.5]\)

>>> import surprise
We first draw out the start and end points of each function
>>> surprise.drawPoints()

[image: _images/7_3_3_6.png]
Then we use the spline suite to draw quadratic splines based on the two points
>>> surprise.drawSpline()

[image: _images/7_3_3_7.png]
>>> surprise.drawTogether()

[image: _images/7_3_3_8.png]

Future

Currently, our DeriveAlive can handle scalar to scalar, scalar to vector, vector to scalar and vector to vector functions. The further improvement for the software can be expected as follows:

Module Extension

	Reverse mode. Now that our DeriveAlive can work perfectly with the forward mode, we are expecting to implement the reverse mode as well. This improvement will allow our users to play with custom Neural Network models using backpropagation.

	Hessian. By calculating and storing the second derivatives in a Hessian matrix, we can make use of more applications of automatic differentiation that use second derivatives, such as Newton optimization and cubic splines.

	Higher-order splines (cubic). We also want to extend the quadratic spline suite to a cubic spline suite or even higher order splines, which would utilize higher order derivatives to be implemented using autodifferentiation. We would also like to allow users to draw any custom plots with this module.

References

	CS 207 Lectures 9 and 10 (Autodifferentiation)

	AM 205 Lectures 2 (Splines)

	Elementary functions:
https://en.wikipedia.org/wiki/Elementary_function

	Package distribution:
https://packaging.python.org/tutorials/packaging-projects/

	Newton root finding (univariate):
https://en.wikipedia.org/wiki/Newton%27s_method

	Newton root finding for \(\mathbb{R}^m \Rightarrow \mathbb{R}^1\):
https://calculus.subwiki.org/wiki/Newton%27s_method_for_root-finding_for_a_vector-valued_function_of_a_vector_variable

	Gradient descent:
https://en.wikipedia.org/wiki/Gradient_descent

	Dataset for predicting housing prices:
http://cs229.stanford.edu

Index

 _images/7_2_3_11.png
x)

15

10

05

Finding stationary point of flx) =sin(x)

—)
= pth

o start10
o end:-15708

intx)

_images/7_2_3_12.png
Finding stationary point of fix, y) = 4(y —x2)? + (1 - x)?

= ptn

® start (60, 60)

® end:(10,10)
1

_images/7_2_3_1.png
x)

20

15

10

05

00

Finding root(s) of x)

=sin(x)

— M =sintx)
= pth

o starta7124
® end:3415

2 o0 2 a4

_images/7_2_3_10.png
0000

50000

0000

30000

Loss function

20000

10000

Loss function vs. number of iterations

00

w0 1500
Iterations,

2000

2500

_images/7_2_3_4.png
Finding root(s) of flx, y,2)

® strt(10,20,50)
@® end: (0.3524,-0.47,03428)

Kayiez

=

2

_images/7_2_3_5.png
x)

X128 - 12x2-2x+6

Finding minimum of f(x

— =X 26 - 122046
== pth

o start a0

® end: 18636

_images/7_2_3_2.png
x)

20

15

10

05

Finding root(s) of flx)

M) mx— et 103

- path

o end:0.1664

start: 00

05

10 15

20

_images/7_2_3_3.png
Finding root(s) of flx, y) =x2 + 4y - 2y + 4

T
1
)t

= ptn
stort (80,50
@ end:(:3.4069,07761)

_images/7_2_3_6.png
Finding minimum of flx, y) = 4ly —x21 + (1 - x)?
)

= ptn
® start:(60,6.0)
® end:(10,10)

_images/7_2_3_7.png
Finding minimum of flx, y) = 4ly —x21 + (1 - x)?
)

= ptn
® st (20,50
® end:(10,10)

_images/7_2_3_8.png
Finding minimum of f(x, y)

= ptn
® start: (15, 175)
® end (3141631416

— cos(x)cos(ylexpl—(lx —m)? + [y =m2))

nav.xhtml

 Table of Contents

 		
 Welcome to DeriveAlive’s documentation!

 		
 Introduction

 		
 How to Use DeriveAlive

 		
 How to install

 		
 Basic demo

 		
 Declare Variables

 		
 Demo 1:

 		
 Demo 2:

 		
 Demo 3:

 		
 Demo 4:

 		
 Background

 		
 The Chain Rule

 		
 Gradient and Jacobian

 		
 The Computational Graph

 		
 Elementary functions

 		
 Software Organization

 		
 Current directory structure

 		
 Basic modules and their functionality

 		
 Test Suite

 		
 Installation using PyPI and GitHub

 		
 Implementation

 		
 Forward Mode Implementation

 		
 API

 		
 DeriveAlive.DeriveAlive

 		
 DeriveAlive.rootfinding

 		
 DeriveAlive.optimize

 		
 DeriveAlive.spline

 		
 Additional Features

 		
 Root finding

 		
 Background

 		
 Implementation

 		
 Demo

 		
 Optimization

 		
 Background

 		
 Implementation

 		
 Demo

 		
 Quadratic Splines

 		
 Background

 		
 Implementation

 		
 Demo

 		
 Drawing with Splines

 		
 Future

 		
 Module Extension

 		
 References

_images/7_3_3_2.png
fx)

100

o075

050

025

000

025

050

075

Lo

10 075 050 025 000 025

o0 o075

130

[TTTTTTTT Y

original
slx)
i)
st
st
sdx)
i)
slx)
St
slx)
stx)

_images/7_3_3_3.png
o075

050

025

000

025

050

075

10 075 050 025 000 025

o0 o075

130

[NEE]

original
slx)
i)
st
i)
sdx)

_images/7_2_3_9.png
(W2m) 3 (wo +wixa + waxz =y

Minimizing flwg, wi, w

start:(0.0,00,0.0)
@ end:(340.4127, 1106298, -6 6483)

0000

50000

40000

30000

20000

10000

_images/7_3_3_1.png
fx)

10 075 050 025 000 025

o0 o075

130

[TTTTTTTT Y

original
slx)
i)
st
st
sdx)
i)
slx)
St
slx)
stx)

_images/7_3_3_6.png
100

075

050

025

000

025

050

075

Lo

_images/7_3_3_7.png
100

075

050

025

000

025

050

075

Lo

_images/7_3_3_4.png
fx)

o075

050

025

000

025

050

075

10 075 050 025 000 025

o0 o075

130

[TTTTTTTT Y

original
slx)
i)
st
st
sdx)
i)
slx)
St
slx)
stx)

_images/7_3_3_5.png
log(averageerror)

30

25

20

15

10

0s

loglog plot of 1/N vs. average error

— linear fit

— actual error plot

[EXE

025

000
og(N)

025

0350

075

_images/7_3_3_8.png
100

075

050

025

000

025

050

075

Lo

_images/bfgs.png
Actual implementation of BFGS: store and update inverse Hessian
to avoid solving linear system:

1: choose initial guess xg

2: choose Hp, initial inverse Hessian guess, e.g. Hyp =1
3. for k=0,1,2,... do

4. calculate sy = —HVF(xx)

5. Xkt1 = Xk + Sk

6 Yk = Vf(xk+1) - Vf(Xk)

7
8

Hi+1 = AHg
: end for
where
1
AHi = (1 = sepryd YHe(! = prysi)+ pisesi > px = T
k

BFGS pseudocode from AM205 Lecture 19

_images/computationgraph.png
sin ex i
X@ :i ggi p@ >f

_static/comment-bright.png

_images/gradient_descent.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/plus.png

